miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia.
نویسندگان
چکیده
MicroRNAs (miRNAs) were recently reported to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH), but it is not clear which miRNAs are important or what pathways are involved in the process. Because hypoxia is an important stimulus for human pulmonary artery smooth muscle cell (HPASMC) proliferation and PAH, we performed miRNA microarray assays in hypoxia-treated and control HPASMC. We found that miR-210 is the predominant miRNA induced by hypoxia in HPASMC. Induction of miR-210 was also observed in whole lungs of mice with chronic hypoxia-induced PAH. We found that transcriptional induction of miR-210 in HPASMC is hypoxia-inducible factor-1α dependent. Inhibition of miR-210 in HPASMC caused a significant decrease in cell number due to increased apoptosis. We found that miR-210 appears to mediate its antiapoptotic effects via the regulation of transcription factor E2F3, a direct target of miR-210. Our results have identified miR-210 as a hypoxia-inducible miRNA both in vitro and in vivo, which inhibits pulmonary vascular smooth muscle cell apoptosis in hypoxia by specifically repressing E2F3 expression.
منابع مشابه
MitoKATP regulating HIF/miR210/ISCU signaling axis and formation of a positive feedback loop in chronic hypoxia-induced PAH rat model
In the present study, we studied the mechanism of mitochondrial ATP-sensitive potassium (mitoKATP) channels regulating hypoxia-inducible factor (HIF)-1α/microRNA (miR)-210/mitochondrial iron-sulfur protein integrin (ISCU) signaling axis and forming a positive feedback loop in chronic hypoxia-induced pulmonary arterial hypertension (PAH) by using in vivo animal model. Two hundred healthy adult S...
متن کاملتاثیر گرلین بر نسبت بیان ژن Bax/Bcl-2 در بافت ریه موشهای صحرایی نگهداری شده در شرایط هیپوکسی مزمن
Background and Objective: Ghrelin has different functions in the body and one of its newly known roles is the antiapoptotic effect. However, this effect of ghrelin has not been considered in the probable hypoxia induced apoptosis in the animal lung tissue. The aim of this study was to examine the effect of ghrelin treatment on Bax/Bcl-2 gene expression in the lung tissue of rats with chronic hy...
متن کاملmiR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling.
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased e...
متن کاملMicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension.
RATIONALE The pathogenesis of pulmonary arterial hypertension (PAH) remains unclear. The 4 microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. OBJECTIVE To elucidate the transcriptional regulation of the miR-143/145 cluster and the role of miR-143 in PAH. METHODS AND RESULTS We identified the promoter region that regulates miR-143/145 microRNA expression in ...
متن کاملMicroRNA-223 Attenuates Hypoxia-induced Vascular Remodeling by Targeting RhoB/MLC2 in Pulmonary Arterial Smooth Muscle Cells.
There is growing evidence that microRNAs are implicated in pulmonary arterial hypertension (PAH), but underlying mechanisms remain elusive. Here, we identified that miR-223 was significantly downregulated in chronically hypoxic mouse and rat lungs, as well as in pulmonary artery and pulmonary artery smooth muscle cells (PASMC) exposed to hypoxia. Knockdown of miR-223 increased PASMC proliferati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 303 8 شماره
صفحات -
تاریخ انتشار 2012